Pricing Discretely Sampled Path-dependent Exotic Options Using Replication Methods
نویسنده
چکیده
A semi-static replication method is introduced for pricing discretely sampled path-dependent options. It depends upon buying and selling options at the reset times of the option but does not involve trading at intervening times. The method is model independent in that it only depends upon the existence of a pricing function for vanilla call options which depends purely on current time, time to expiry, spot and strike. For the special case of a discrete barrier, an alternative method is developed which involves trading only at the initial time and the knockout time or expiry of the option.
منابع مشابه
Fourier transform algorithms for pricing and hedging discretely sampled exotic variance products and volatility derivatives under additive processes
We develop efficient fast Fourier transform algorithms for pricing and hedging discretely sampled variance products and volatility derivatives under additive processes (time-inhomogeneous Lévy processes). Our numerical algorithms are non-trivial versions of the Fourier space time stepping method to nonlinear path dependent payoff structures, like those in variance products and volatility deriva...
متن کاملA Finite Element Platform For Pricing Path-Dependent Exotic Options
For many path-dependent options, such as Asian options, lookbacks, Parisian options, using partial differentiation equation (PDE) approach to price these exotic options can be straightforward and flexible. In addition, modified versions of the standard exotic path-dependent options can be easily accommodated in the same pricing algorithms. For example, American early exercise features, barriers...
متن کاملThe pricing of discretely sampled Asian and lookback options: a change of numeraire approach
This paper considers the pricing of discretely sampled Asian and lookback options with ̄oating and ®xed strikes. In the modelling framework of Black and Scholes (1973), it is shown that a change of numeraire of the martingale measure can be used to reduce the dimension of these path-dependent option pricing problems to one in addition time. This means that the pricing problems can be solved by n...
متن کاملA Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options
This paper develops algorithms for the pricing of discretely sampled barrier, lookback and hindsight options and discretely exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently using the double-exponential ...
متن کاملClosed Form Pricing Formulas for Discretely Sampled Generalized Variance Swaps
Most of the existing pricing models of variance derivative products assume continuous sampling of the realized variance processes, though actual contractual specifications compute the realized variance based on sampling at discrete times. We present a general analytic approach for pricing discretely sampled generalized variance swaps under the stochastic volatility models with simultaneous jump...
متن کامل